
Black Box Security Testing Tools 1
ID: 261-BSI | Version: 16 | Date: 9/9/09 10:41:13 AM

Black Box Security Testing Tools
C. C. Michael, Cigital, Inc. [vita1]

Will Radosevich, Cigital, Inc. [vita2]

Copyright © 2005, 2009 Cigital, Inc.

2005-12-28; Updated 2009-07-27 by Ken van Wyk

[vita3]
L3 / L, M4

This document is about black box testing tools. We use this term to refer to tools that take a black box view
of the system under test; they do not rely on the availability of software source code or architecture, and in
general try to explore the software’s behavior from the outside.

Introduction6

Business Case7

Black Box, White Box, and Gray Box Testing8

Types of Test Tools9

Technologies for Black Box Security Testing10

Evaluation Criteria11

Use Throughout the Software Development Life Cycle12

Case Study13

Glossary14

Introduction
This document focuses on black box testing technologies that are unique to software security testing. To
go beyond that boundary would entail a full discussion of test automation and automated test management
support, which is far beyond the intended scope of the document. These other technologies are touched upon,

however, in the Evaluation Criteria17 section.

This document discusses one particular aspect of black box security testing, namely, the use of automated
tools during the test process. But any such discussion should begin with a caveat: security testing relies on
human expertise to an even greater extent than ordinary testing, so full automation of the test process is even
less achievable than in a traditional testing environment. Although there are tools that automate certain types
of tests, organizations using such tools should not be lulled into a false sense of security, since such tools
cover only a small part of the spectrum of potential vulnerabilities. Instead, test tools should be viewed as
aides for human testers, automating many tasks that are time consuming or repetitive.

1. http://buildsecurityin.us-cert.gov/bsi/about_us/authors/251-BSI.html (Michael, C. C.)
2. http://buildsecurityin.us-cert.gov/bsi/about_us/authors/252-BSI.html (Radosevich, Will)
6. #dsy261-BSI_intro
7. #dsy261-BSI_buscase
8. #dsy261-BSI_BWG
9. #dsy261-BSI_types
10. #dsy261-BSI_techs
11. #dsy261-BSI_Evaluation-Criteria
12. #dsy261-BSI_SDLC
13. #dsy261-BSI_study
14. #dsy261-BSI_glossary
17. #dsy261-BSI_Evaluation-Criteria

http://buildsecurityin.us-cert.gov/bsi/about_us/authors/251-BSI.html
http://buildsecurityin.us-cert.gov/bsi/about_us/authors/252-BSI.html
http://buildsecurityin.us-cert.gov/bsi/about_us/authors/202-BSI.html
http://buildsecurityin.us-cert.gov/bsi/1084-BSI.html
#dsy261-BSI_intro
#dsy261-BSI_buscase
#dsy261-BSI_BWG
#dsy261-BSI_types
#dsy261-BSI_techs
#dsy261-BSI_Evaluation-Criteria
#dsy261-BSI_SDLC
#dsy261-BSI_study
#dsy261-BSI_glossary
#dsy261-BSI_Evaluation-Criteria

Black Box Security Testing Tools 2
ID: 261-BSI | Version: 16 | Date: 9/9/09 10:41:13 AM

Scope and Intended Audience
This document is meant for security analysts and aims to provide an overview of the capabilities of black
box testing tools. The focus is on categorizing important capabilities of these tools and providing some
guidance for evaluating them.

Business Case
Black box testing is generally used when the tester has limited knowledge of the system under test or when
access to source code is not available. Within the security test arena, black box testing is normally associated
with activities that occur during the pre-deployment test phase (system test) or on a periodic basis after the
system has been deployed.

Black box security tests are conducted to identify and resolve potential security vulnerabilities before
deployment or to periodically identify and resolve security issues within deployed systems. They can also
be used as a “badness-ometer” [McGraw 04] to give an organization some idea of how bad the security of
their system is. From a business perspective, organizations conduct black box security tests to conform to
regulatory requirements, protect confidential and proprietary information, and protect the organization’s
brand and reputation.

Businesses have a legitimate reason to be concerned about potential security vulnerabilities within their
systems. In 2003, the CERT Coordination Center received 137,529 reports of security incidents [CERT

06].23 This was a staggering 67.5% increase in the number of reported incidents from the previous year.
A great number of these incidents were due to the widespread use of automated attack tools that have
simplified security scans and attacks and allowed them to rapidly be employed against Internet-connected
computers and applications.

While the number of reported security incidents continues to rise, the CSI/FBI noted that the total monetary
loss reported by 144 companies in 2008 was significant at $41,560,992 [Richardson 08]. In addition,
CSI/FBI noted that the average financial loss of reporting organizations subjected to theft of proprietary
information was $241,000, and those reporting losses due to financial fraud was $463,100.

These figures describe significant financial losses that are the direct result of security incidents. Although
security testing on its own is not a suitable substitute for using security best practices throughout the SDLC,
black box test tools can help an organization begin to understand and address potential security issues within
their systems. These tools allow testers to efficiently and in an automated manner conduct security scans
for both known and unknown security vulnerabilities that may adversely impact an organization’s business.
Armed with the results of the black box test effort, organizations can better understand and address the risks
posed to their business.

Application Security Test Tools. The CSI/FBI 2008 Computer Crime and Security Survey continues to
show steady increases in web application incidents, with 11% of survey respondents advising that they had
experienced misuse of their web applications during the past year.

Fortunately, a significant number of black box test tools focus on application security related issues. These
tools concentrate on security related issues including but not limited to

• input checking and validation

• SQL insertion attacks

• injection flaws

• session management issues

• cross-site scripting attacks

• buffer overflow vulnerabilities

• directory traversal attacks

23. The CERT Coordination Center no longer collects or reports annual incident data; 2003 was the last year the data was reported.

Black Box Security Testing Tools 3
ID: 261-BSI | Version: 16 | Date: 9/9/09 10:41:13 AM

The tools are developed and distributed by a collection of open source communities and for-profit businesses
such as the Open Web Application Security Project (OWASP), Cenzic, HP (formerly SPI Dynamics),
NT Objectives, IBM (formerly Sanctum), and others. As the trend for web application security incidents
increases, the need for these tools to test Internet-enabled applications increases as well.

Pre-Deployment: During the Development Life Cycle. According to NIST, the relative cost of repairing
software defects increases the longer it takes to identify the software bug [NIST 02]. For example, NIST
estimates that it can cost twenty times more to fix a coding problem that is discovered after the product has
been released than it would have cost if discovered during the system test phase, when black box test tools
are normally used.

This figure should not be surprising considering the personnel and processes required to address a security
issue after deployment. Help desk personnel are required to take trouble calls from the customer; support
engineers are required to confirm and diagnose the problem; developers are needed to implement code fixes;
QA personnel are called to perform system regression tests; and managers oversee the entire process. There
are additional expenses to consider, such as those associated with patch distribution and the maintenance
of multiple concurrently deployed versions. Additionally, a serious post-deployment software vulnerability
may result in potential business issues, such as damage to brand or company reputation, and potential legal
liability issues.

Accordingly, black box security test tools can be used during the system test phase to identify and address
these issues, reduce system development costs, and reduce business risks associated with company reputation
and liability.

Post-Deployment: An Evolving Challenge. Unfortunately, the specific instance of security vulnerabilities
is constantly changing. For example, during the first quarter of 2009, each month NIST catalogued
approximately 568 new security vulnerabilities [NIST 09]. By comparison, CERT cataloged 7,236
vulnerabilities in 2007. These figures highlight the challenges all organizations face when using software in
the conduct of their business.

Many of these failures are a direct result of improper security designs or implementation errors that are
introduced during development. Organizations that purchase software do not have control over these issues.
Fortunately, many black box security test tools are periodically updated to test for these newly discovered
vulnerabilities, allowing businesses to conduct periodic security tests of their systems.

Benefits and Limitations of Black Box Testing. As previously discussed, black box tests are generally
conducted when the tester has limited knowledge of the system under test or when access to source code is
not available. On its own, black box testing is not a suitable alternative for security activities throughout the
software development life cycle. These activities include the development of security-based requirements,
risk assessments, security-based architectures, white box security tests, and code reviews. However, when
used to complement these activities or to test third-party applications or security-specific subsystems, black
box test activities can provide a development staff crucial and significant insight regarding the system’s
design and implementation.

Black box tests can help development and security personnel

• identify implementation errors that were not discovered during code reviews, unit tests, or security
white box tests

• discover potential security issues resulting from boundary conditions that were difficult to identify and
understand during the design and implementation phases

• uncover security issues resulting from incorrect product builds (e.g., old or missing modules/files)

• detect security issues that arise as a result of interaction with underlying environment (e.g., improper
configuration files, unhardened OS and applications)

Accordingly, black box security test efforts complement the critical security activities throughout the
SDLC. The tools help developers and security personnel verify that the system security components are
operating properly and also identify potential security vulnerabilities resulting from implementation errors.
Additionally, black box security tests can help security practitioners test third-party components that may be

Black Box Security Testing Tools 4
ID: 261-BSI | Version: 16 | Date: 9/9/09 10:41:13 AM

considered for integration into the overall system and for which source code is not available. These tests may
help the development staff uncover potential security vulnerabilities and make intelligent decisions about the
use of certain products within their overall system.

Although these tests should not be considered a substitute for techniques that help developers build security
into the product during the design and implementation stages, without these tests, developers may overlook
implementation issues not discovered in earlier phases. Despite the best efforts of the development staff,
mistakes do occur—coding errors, incorrect components in the latest software build, unexpected interaction
with the deployed environment, and boundary conditions, to name a few. Black box security tests provide a
method to validate the security of the system before it is deployed.

Black box testing tools provide various types of automated support for testers. They help testers work more
efficiently by automating whatever tasks can be automated, and they also help testers avoid making mistakes
in a number of tasks where careful bookkeeping is needed. Their main roles include

• test automation: providing automated support for the actual process of executing tests, especially tests
that have already been run in the past but are being repeated

• test scaffolding: providing the infrastructure needed in order to test efficiently

• test management: various measurements and scheduling and tracking activities that are needed for
efficient testing even though they are not directly involved in the execution of test cases

Black Box, White Box, and Gray Box Testing
In this document, we use the term “black box testing” to mean test methods that are not based directly on a
program’s architecture source code. The term connotes a situation in which either the tester does not have
access to the source code or the details of the source code are irrelevant to the properties being tested. This
means that black box testing focuses on the externally visible behavior of the software. For example, it may
be based on requirements, protocol specifications, APIs, or even attempted attacks.

In some formulations, a black box tester has access only to the application’s user interface, either for entering
data or observing program behavior. We will not adopt this viewpoint here, since one of the main points
of black box security testing is to get some idea of what an attacker could do to an application. In many
situations, attackers are not constrained to interact with a program through the UI (though many do).

Black box testing is different from white box testing, which is testing based on knowledge of the source
code. In fact, white box tests are generally derived from source code artifacts in some way or another. For
example, the tests might target specific constructs found in the source code or try to achieve a certain level of
code coverage.

Between black box and white box testing lies gray box testing, which uses limited knowledge of the program
internals. In principle this could mean that the tester knows about some parts of the source code and not
others, but in practice it usually just means that the tester has access to design artifacts more detailed than
specifications or requirements. For example, the tests may be based on an architecture diagram or a state-
based model of the program’s behavior.

Types of Test Tools
Black box test activities almost universally involve the use of tools to help testers identify potential security
vulnerabilities within a system. Among the existing available toolsets, there are subsets of tools that focus
on specific areas, including network security, database security, security subsystems, and web application
security.

Network security based test tools focus on identifying security vulnerabilities on externally accessible
network-connected devices such as firewalls, servers, and routers. Network security tools generally begin by
using a port scanner to identify all active devices connected to the network, services operating on the hosts,
and applications running on each identified service.

Black Box Security Testing Tools 5
ID: 261-BSI | Version: 16 | Date: 9/9/09 10:41:13 AM

Some network scanning tools also perform vulnerability scanning functions. That is, they identify
specific security vulnerabilities associated with the scanned host based on information contained within
a vulnerability database. Potential vulnerabilities include those related to open ports that allow access to
insecure services, protocol-based vulnerabilities, and OS and application related vulnerabilities resulting
from poor implementation or configuration. Each vulnerability provides a potential opportunity for an
attacker to gain unauthorized access to the system or its resources. These tools have historically been
associated with penetration testing, which is not covered in this document.

Database security test tools center on identifying vulnerabilities in a systems database. These can be the
result of incorrect configuration of the database security parameters or improper implementation of the
business logic used to access the database (e.g., SQL insertion attacks). These vulnerabilities may result
in the disclosure or modification of sensitive data in the database. Database scanning tools are generally
wrapped in network security or web application security scanning tools and will not be specifically discussed
in this document.

Security subsystem tools identify security vulnerabilities in specific subsystems. Whereas the previously
discussed tools are used after the system has been developed, these tools are used during the implementation
cycle to test whether security-critical subsystems have been designed and implemented properly. As an
example, these tools test for correct operation of random number generators (e.g., NIST Statistical Test

Suite37 for random number generation), cryptographic processors, and other security-critical components.

Web application security tools highlight security issues within applications accessed via the Internet. Unlike
network security tools, application security tools generally focus on identifying vulnerabilities and abnormal
behavior within applications available over ports 80 (HTTP) and 443 (HTTPS). These ports are traditionally
allowed through a firewall to support web servers. Note that many of these tools can also test Web Services
based application technologies over the same ports.

Through the years, IT managers and security professionals have learned to secure the network perimeter by
installing and maintaining firewalls and other security appliances, securely configuring host machines and
their applications, and enforcing a software patch management solution to address software vulnerabilities.
At the same time, attackers and security professionals alike have identified a new class of security
vulnerabilities within web based applications. This new class of security vulnerabilities cannot be controlled
by the firewall and must be addressed with proper application design and implementation. The Gartner
Group reports that up to 75% of all web-based attacks are now conducted through the open web application
ports 80 and 443. As a result, web-based applications must be designed in a manner that does not permit an
attacker to take advantage of an application’s vulnerability. These vulnerabilities can result from a number of
issues, including

• improper input validation

• parameter injection and overflow

• SQL injection attacks

• cross-site scripting vulnerabilities

• cross-site request forgeries

• directory traversal attacks

• buffer overflows

• inappropriate trust (i.e. client side)

• poor session management

• improper authorization and access control mechanisms

Application security test tools can be used to help identify potential security vulnerabilities within
commercial and proprietary based web applications. The tools are frequently used in both the pre-
deployment and post-deployment test cycles. A development staff can use application security tools to test
their web-based applications prior to deployment. Pre-deployment testing allows the development staff to

37. http://csrc.nist.gov/rng/rng2.html

http://csrc.nist.gov/rng/rng2.html
http://csrc.nist.gov/rng/rng2.html

Black Box Security Testing Tools 6
ID: 261-BSI | Version: 16 | Date: 9/9/09 10:41:13 AM

investigate and resolve noted vulnerabilities and abnormal or interesting test results. The test tools can also
be used post-deployment by the developer or the developer’s customer to periodically test and monitor the
deployed system.

Some of these tools provide rather sophisticated functionality, including capabilities to develop and enforce
organization security policies, the ability to create custom rules, the automated scheduling of application
security tests, and comprehensive vulnerability databases that attempt to address zero-day attacks.

These tools are created and offered by both open source communities and commercial companies. As
previously stated, a number of black box testing tools provide tests that focus on several of these test areas.
It is important to note that these tools are different than the plethora of source code scanning and binary/
bytecode scanning tools. Although the use of source code and binary/bytecode scanning tools is considered
an important element of a robust security engineering process, these tools are not considered black box
testing tools and will not be discussed in this section.

Commercial Tools
The following is a sample of commercially available application security black box test tools. The list is
intended to familiarize the reader with various tools on the market and to encourage the reader to conduct
independent review of application security tool capabilities.

Cenzic Hailstorm41

IBM (formerly Internet Security Systems) Internet Security Scanner42

NT Objectives NTOSpider43

IBM (formerly Watchfire and Santum) Appscan44

Security Innovation45 (Holodeck)

HP (formerly SPI Dynamics) WebInspect46, DevInspect47

Open Source/Freeware
The following is a brief sample list of open source and freeware application security scanning and testing
tools.

Nikto50

Odysseus51

OWASP WebScarab52

Paros Proxy53

SPIKE54

41. http://www.cenzic.com/products/software/overview/
42. http://www.iss.net/products_services/enterprise_protection/vulnerability_assessment/scanner_internet.php
43. http://www.ntobjectives.com/products/ntospider.php
44. http://www-01.ibm.com/software/awdtools/appscan/
45. http://www.sisecure.com/company/ourtechnology/index.shtml
46. http://welcome.hp.com/country/us/en/prodserv/software.html
47. http://welcome.hp.com/country/us/en/prodserv/software.html
50. http://www.cirt.net/code/nikto.shtml
51. http://www.bindshell.net/tools/odysseus
52. http://www.owasp.org/software/webscarab.html
53. http://www.parosproxy.org/index.shtml
54. http://www.immunitysec.com/resources-freesoftware.shtml

http://www.cenzic.com/products/software/overview/
http://www.iss.net/products_services/enterprise_protection/vulnerability_assessment/scanner_internet.php
http://www.ntobjectives.com/products/ntospider.php
http://www-01.ibm.com/software/awdtools/appscan/
http://www.sisecure.com/company/ourtechnology/index.shtml
http://welcome.hp.com/country/us/en/prodserv/software.html
http://welcome.hp.com/country/us/en/prodserv/software.html
http://www.cirt.net/code/nikto.shtml
http://www.bindshell.net/tools/odysseus
http://www.owasp.org/software/webscarab.html
http://www.parosproxy.org/index.shtml
http://www.immunitysec.com/resources-freesoftware.shtml

Black Box Security Testing Tools 7
ID: 261-BSI | Version: 16 | Date: 9/9/09 10:41:13 AM

Tool Selection
Selecting a black box test tool can be a challenging task due to the wide array of available commercial
vendors and open source projects in this area. There are a number of high-level considerations that you
should contemplate before selecting a tool that is useful for your specific application and organization:

• test coverage and completeness

• accuracy or “false-positive” rate

• capacity and “freshness” of vulnerability database

• ability to create custom tests

• ease of use

• reporting Capabilities

• cost

A list of criteria that one may consider before selecting a black box test tool is included in Section Evaluation

Criteria65.

Technologies for Black Box Security Testing
Not surprisingly, black box testing for security has a different technological focus than traditional black
box testing. [Fink 04] defines positive requirements as those requirements that state what a software system
should do, while negative requirements state what it should not do. Although security testing deals with
positive requirements as well as negative ones, the emphasis is on negative requirements. In contrast,
traditional software testing focuses on positive requirements. This difference in emphasis is reflected in the
test tools that support black box test activities.

The technology incorporated in such tools can be classified as follows, according to its functionality:

• fuzzing: the injection of random or systematically-generated data at various interfaces, with various
levels of human intervention to specify the format of the data

• syntax testing: generating a wide range of legal and illegal input values, usually with some knowledge
of the protocols and data formats used by the software

• exploratory testing: testing without specific expectation about test outcomes, and generally without a
precise test plan

• data analysis: testing the data created by an application, especially in the context of cryptography

• test scaffolding: providing testers with support tools they need in order to carry out their own black box
tests. For example, if the tester wants to inject a certain error code when an application tries to open a
pipe, support technology is needed to actually carry out this test.

• monitoring program behavior: When a large number of tests are automatically applied, it is useful
to also have automatic techniques for monitoring how the program responds. This saves testers from
having to check for anomalous behavior manually. Of course, a human is better at seeing anomalous
behavior, but the anomalies that signal the presence of a security vulnerability are often quite obvious.

In this section, we do not discuss test automation technology, which is a standard technology used to
automate the execution of tests once they have been defined. It is technology for traditional testing, and
this fact makes it too broad of a subject to cover within the intended scope of this document. However, any
extensive treatment of software testing also covers test automation, and the reader may consult standard
references on software testing such as [Beizer 95], [Black 02], and [Kaner 93].

Fuzzing
The term fuzzing is derived from the fuzz utility (ftp://grilled.cs.wisc.edu/fuzz), which is a random character
generator for testing applications by injecting random data at their interfaces [Miller 90]. In this narrow
sense, fuzzing means injecting noise at program interfaces. For example, one might intercept system calls

65. #dsy261-BSI_Evaluation-Criteria

#dsy261-BSI_Evaluation-Criteria
#dsy261-BSI_Evaluation-Criteria

Black Box Security Testing Tools 8
ID: 261-BSI | Version: 16 | Date: 9/9/09 10:41:13 AM

made by the application while reading a file and make it appear as though the file contained random bytes.
The idea is to look for interesting program behavior that results from noise injection and may indicate the
presence of a vulnerability or other software fault.

Since the idea was originally introduced, the informal definition of fuzzing has expanded considerably, and
it can also encompass domain testing, syntax testing, exploratory testing, and fault injection. This has the
unfortunate consequence that when one author denigrates fuzzing (as in [McGraw 04]) while another extols

it (as in [Faust 04]), the two authors might not be talking about the same technology85. The current section
is partly meant to emphasize that in this document, “fuzzing” is used in the narrow sense implied by [Miller
90].

Fuzzing, according to the first, narrower definition, might be characterized as a blind fishing expedition
that hopes to uncover completely unsuspected problems in the software. For example, suppose the tester
intercepts the data that an application reads from a file and replaces that data with random bytes. If the
application crashes as a result, it may indicate that the application does not perform needed checks on the
data from that file but instead assumes that the file is in the right format. The missing checks may (or may
not) be exploitable by an attacker who exploits a race condition by substituting his or her own file in place of
the one being read, or an attacker who has already subverted the application that creates this file.

For many interfaces, the idea of simply injecting random bits works poorly. For example, imagine presenting
a web interface with the randomly generated URL “Ax@#1ZWtB.” Since this URL is invalid, it will be
rejected more or less immediately, perhaps by a parsing algorithm relatively near to the interface. Fuzzing
with random URLs would test that parser extensively, but since random strings are rarely valid URLs, this
approach would rarely test anything else about the application. The parser acts as a sort of artificial layer of
protection that prevents random strings from reaching other interesting parts of the software.

For this and other reasons, completely random fuzzing is a comparatively ineffective way to uncover
problems in an application. Fuzzing technology (along with the definition of fuzzing) has evolved to include
more intelligent techniques. Microsoft refers to this as “smart fuzzing,” [Howard 2006] in which the fuzzing
tools (and test staff) have significant knowledge of the fuzz target. For example, fuzzing tools are aware
of commonly used Internet protocols, so that testers can selectively choose which parts of the data will be
fuzzed. These tools also generally let testers specify the format of test data, which is useful for applications
that do not use one of the standard protocols. These features overcome the limitation discussed in the
previous paragraph. In addition, fuzzing tools often let the tester systematically explore the input space; for
example, the tester might be able to specify a range of input values instead of having to rely on randomly
generated noise. As a result, there is a considerable overlap between fuzzing and syntax testing, which is the
topic of the next section.

Syntax Testing
Syntax testing [Beizer 90] refers to testing that is based on the syntactic specification of an application’s
input values. The idea is to determine what happens when inputs deviate from this syntax. For example,
the application might be tested with inputs that contain garbage, misplaced or missing elements, illegal
delimiters, and so on. In security testing, one might present a web-based application with an HTTP query
containing metacharacters or JavaScript, which in many cases should be filtered out and not interpreted.
Another obvious syntax test is to check for buffer overflows by using long input strings.

Syntax testing helps the tester confirm that input values are being checked correctly, which is important
when developing secure software. On the other hand, syntactically correct inputs are also necessary for
getting at the interesting parts of the application under test, as opposed to having the test inputs rejected right
away, like the random-character URL in the section on fuzzing.

85. This issue is not unique to fuzzing. When acquiring a testing tool (or any other technology), it is therefore wise to evaluate it
according what it actually does, and not according to the names it gives to its capabilities.

Black Box Security Testing Tools 9
ID: 261-BSI | Version: 16 | Date: 9/9/09 10:41:13 AM

Typically, it is possible to automate the task of getting inputs into the right form (or into almost the right
form, as the case may be). This lets the tester focus on the work of creating test cases instead of entering
them in the right format.

However, the degree of automation varies. It is common for testers to write customized drivers for syntax
testing, which is necessary when the inputs have to be in an application-specific format. Test tools can
provide support for this by letting the tester supply a syntax specification and automating the creation of a
test harness based on that syntax. On the other hand, the tool may also come with a prepackaged awareness
of some common input formats.

In security test tools, there is a certain emphasis on prepackaged formats because many applications
communicate across the network using standard protocols and data formats. It makes sense for a security
test tool to be aware of widely used protocols, including HTTP, FTP, SMTP, SQL, LDAP, and SOAP,
in addition to supporting XML and simplifying the creation of malicious JavaScript for testing purposes.
This allows the tool to generate test input that almost makes sense but contains random values in selected
sections. Creating useful syntax tests can be a complex task because the information presented at the
application interface might be mixed, perhaps containing SQL or JavaScript embedded in an HTTP query.

Many attacks are injection attacks, where a datastream that is in one format according to the specification
actually contains data in another format. Specifically, most data formats allow for user-supplied data in
certain locations, such as SQL queries in a URI. The embedded data may be interpreted by the application,
leading to vulnerabilities when an attacker customizes that data. Such vulnerabilities may or may not be
visible in the design; a classic example of where they are not visible is when a reused code module for
interpreting HTML also executes JavaScript.

One important variant of syntax testing is the detection of cross-site scripting vulnerabilities. Here, the actual
interpreter is in the client application and not the server, but the server is responsible for not allowing itself
to be used as a conduit for such attacks. Specifically, the server has to strip JavaScript content from user-
supplied data that will be echoed to clients, and the same goes for other data that might lead to undesired
behavior in a client application. Testing for cross-site scripting vulnerabilities (see [Hoglund 02]) amounts
to ensuring that dangerous content really is being stripped before data is sent to a client application, and this,
too, involves specially formatted data.

Automated support for syntax testing may or may not provide a good return on investment. Good security
testing requires a certain level of expertise, and a security tester will probably be able to write the necessary
support tools manually. Custom data formats make it necessary to write some customized test harnesses in
any event. It may also be cost effective to write in-house test harnesses for standard protocols, since those
harnesses can be reused later on, just as third-party test harnesses can. Although in-house test drivers do not
usually come into the world with the same capabilities as a third-party test application, they tend to evolve
over time. Therefore, the amount of effort that goes into the development and maintenance of in-house test
drivers diminishes over time for commonly used data formats. In spite of these factors, third-party tools often
can have usability advantages, especially compared to in-house tools being used by someone who did not
develop them originally.

Exploratory Testing and Fault Injection
In security testing, it may sometimes be useful to perform tests without having specific expectations about
the test outcome. The idea is that the tester will spot anomalies—perhaps subtle ones—that eventually lead to
the discovery of software problems or at least refocus some of the remaining test effort. This contrasts with
most other testing activities because usually the test plan contains information about what kind of outcomes
to look for. Exploratory testing is discussed in depth in [Whittaker 02] and [Whittaker 03].

There is no technical reason why a test plan cannot map out these tests in advance, but in practice many
testers find it useful to let the outcome of one test guide the selection of the next test. In a sense, the tester
is exploring the software’s behavior patterns. This makes sense because a subtle anomaly may create the
need to collect further information about what caused it. In a black box test setting, getting more information
implies doing more tests. This leads to the concept of exploratory testing.

Black Box Security Testing Tools 10
ID: 261-BSI | Version: 16 | Date: 9/9/09 10:41:13 AM

Most test technologies that support exploratory testing can also be used for other test activities, but some
techniques are associated more closely with exploratory testing than with other types of testing. For example,
fuzzing (in the narrow sense of the word described earlier) falls into this category, because usually testers
don’t have any exact idea of what to expect. More generally, certain test techniques make it hard to say
exactly what anomalous behavior might occur even though there is interest in seeing how an application will
respond. Some of the other techniques that fall into this category are:

Security stress testing, which creates extreme environmental conditions such as those associated with
resource exhaustion or hardware failures. During traditional stress testing, the idea is to make sure that the
application can continue to provide a certain quality of service under extreme conditions. In contrast, during
security testing it may be a foregone conclusion that the application will provide poor service—perhaps good
performance under stress is not a requirement—and the tester might be looking for other anomalies. For
example, extreme conditions might trigger an error-handling routine, but error handlers are notorious for
being under-tested and vulnerable. As a second example, slow program execution due to resource exhaustion
might make race conditions easier to exploit, along with other quality and security related issues such as
concurrency. Problems like race conditions and concurrency issues can be problematic to find and to test
for without being able to produce heavy load situations like might be found in production environments.
In many cases, an attacker might be able to create whatever extreme conditions are needed for an attack
to succeed. Thus, stress testing should be considered an important part of the security testing process,
particularly in heavily multithreaded computing environments.

Fault injection, which directly modifies the application’s internal state [Voas 97]. Fault injection is often
associated with white box testing, since it references the program’s internal state, but in practice certain types
of test modify external data so close to the program’s inner workings that they can also be regarded as fault
injection. For example, the tester might intercept calls to the operating system and interfere with the data
being passed there. Interfering in communication between executable components might also be regarded as
a black box technique.

Fault injection can clearly be used for stress testing, but it can also be used to help a tester create conditions
with relative ease that an attacker might create with greater effort. For example, if the tester interferes with
interprocess communication, it might approximate a situation where one of the communicating processes has
been subverted by an attacker. Likewise, intercepting calls to the operating system can be used to simulate
the effects of an attacker getting control of external resources, since system calls are used to access those
resources. It is not always clear how an attacker might exploit problems found using fault injection, but it
can still be useful to know that those problems are there. Of course, some of the resulting tests might also be
unfair—for example, an attacker intercepting system calls could manipulate all of the application’s memory
—and in the end the tester has to ensure that the test results are meaningful in an environment where the
operating system protects the application from such attacks.

Data Analysis Capabilities
By data analysis, we mean the process of trying to understand a program’s internals by examining the data it
generates. This might be followed by an attempt to go beyond mere observation and influence the program’s
behavior as well. One of the concerns of black box security testing is to try performing this type of analysis
in order to determine whether an attacker could do the same thing.

Two particularly salient issues are

• Stateless protocols use external mechanisms to keep track of the state of a transaction (HTTP uses
cookies, for example). It is not always desirable to expose this state information to a potential attacker,
but data analysis can be used to deduce state information at the black box level.

• It is sometimes necessary to use random numbers to generate cryptographically secure keys or hashes
on the fly. If an attacker can collect outputs from a weak random number source and analyze those
outputs sufficiently well to predict future random bits, even a strong cryptographic algorithm can be
compromised.

Black Box Security Testing Tools 11
ID: 261-BSI | Version: 16 | Date: 9/9/09 10:41:13 AM

A related issue that will not be discussed at great length is that random numbers are used in computerized
casino gaming, and an attacker who can predict these numbers—even partially—may be able to cheat.

In each of these cases, the security issue is the ability to generate random numbers that prevent the attacker
from seeing patterns or predict future values. As a rule, this issue should be addressed in the design phase—
using weak random number generation is a design flaw—but testing still plays its usual roles. For example,
it can be used to probe whether the design is implemented correctly or to examine third-party components
whose source code is unavailable. In one case, a municipality needed secure random numbers to secure a
specific aspect of law-enforcement-related communications, but problems were encountered in obtaining the
necessary source code from a third-party vendor. Black box testing was used to achieve a minimal level of
due diligence in the question of whether the random numbers were unpredictable.

Cookie analysis deserves its own discussion. It consists of deducing how a web application uses cookies
in order to examine the application’s inner workings, or even to hijack sessions by predicting other users’
cookie values. In a well-designed system this should not lead to an immediate compromise—after all, truly
sensitive information should be protected by SSL or a similar mechanism—but cookie analysis can provide
the toehold that an attacker needs in order to launch a more damaging attack. Of course, not all software
systems are well designed, and some are vulnerable to direct compromises using cookie analysis, or even
simple replay attacks involving cookies.

These issues lead to the idea of randomness testing, which is within the scope of black box testing.

Some black box testing tools provide simple statistical tests and visualization tools to support cookie
analysis. Furthermore, the analysis and detection of cryptographically weak random-number schemes is
not purely the domain of software security, and this works to the advantage of the black box tester because
it makes more technology available for that task. For example, weak random number generation is often
used to generate events in software-based simulations, an application in which speed is more important than
security. This creates a need to know exactly what the weaknesses of the random number generator are so
that they do not bias the simulation.

There are some standard software packages for evaluating randomness empirically: the NIST battery115, the

Diehard battery116, and ent117.

As a final note, testers should be aware that even if a random number source passes these test batteries,
this does not imply that the source is cryptographically secure. As in many other areas, testing can only
demonstrate the presence of problems, not their absence.

Monitoring Program Behavior
Monitoring program behavior is an important part of any testing process because there must be a way
to determine the test outcome. This is often referred to as observability. Usually it means examining
the behavior of the program under test and asking whether this observed behavior is symptomatic of a
vulnerability in the software. This examination can be harder in security testing than it is in traditional
testing, because the tester is not necessarily comparing actual program behavior to expectations derived from
specifications. Rather, the tester is often looking for unspecified symptoms that indicate the presence of
unsuspected vulnerabilities. Nonetheless, there are cases in which the unusual behavior sought by a security
tester can be specified cleanly enough to test for it automatically.

For example, if a web application is being tested for cross-site scripting vulnerabilities, an attacker’s ability
to make the application echo externally supplied JavaScript is enough to indicate a possible problem.
Likewise, a series of tests meant to detect potential buffer overflows may just require the application to be
monitored for crashes.

115. http://csrc.nist.gov/rng/
116. http://en.wikipedia.org/wiki/Diehard_tests
117. http://www.fourmilab.ch/random/

http://csrc.nist.gov/rng/
http://en.wikipedia.org/wiki/Diehard_tests
http://www.fourmilab.ch/random/

Black Box Security Testing Tools 12
ID: 261-BSI | Version: 16 | Date: 9/9/09 10:41:13 AM

There are many test automation tools with the ability to monitor program outputs and behavior. In selecting
a black box testing tool, it may be useful to consider whether a tool either provides its own monitoring
capabilities or integrates with other existing test automation frameworks.

Another aspect of behavior monitoring is that for security testing, one may have to observe black box
behavior that is not normally visible to the user. This can include an application’s communication with
network ports or its use of memory, for example. This functionality is discussed in the next section, which
deals with test support tools. A fault injection tool may also support this type of monitoring because the
underlying technologies are similar.

A final issue that also applies to traditional testing is that automation is quite useful for spotting anomalous
test outcomes. This is especially true during high-volume test activities like fuzzing. In security testing,
a great deal of reliance is placed on the tester’s ability to see subtle anomalies, but the anomalies are not
always too subtle for automated detection. Thus, some test tools automate monitoring by letting the tester
specify in advance what constitutes anomalous behavior.

Test Scaffolding
By test scaffolding we mean tools that support the tester’s activities, as opposed to actually generating data.
This primarily includes test management technology, but test management is in the domain of traditional test
automation and we do not cover it here. Instead, we focus on technology for observing and/or influencing
application behavior in ways that would not normally be possible for an ordinary user or tester.

Technologies for observing program behavior are quite common, since they are needed for numerous
other purposes as well, such as debugging and performance monitoring. Of course, their utility in test
automation depends somewhat on how easily they can be integrated with other test tools, especially those
for monitoring program behavior. Thus debuggers, which are usually interactive, can provide testers with
valuable information but might be a bottleneck during automated testing. On the other hand, text-based tools
can have their outputs postprocessed even if they are not explicitly supported by a testing tool, while some
graphical tools might allow a tester to observe anomalies even with a rapid-fire series of automated tests.

There are some testing tools, notably the Holodeck system [Whittaker 02,Whittaker 03], that already include
test scaffolding of this kind.

Evaluation Criteria
The following is a list of evaluation criteria that may be considered when selecting a black box security

testing tool. Many of the criteria listed here are from Appendix B of [Dustin 01]129. Readers are encouraged
to consult this original document as well, since it gives an expanded list of evaluation criteria and also
provides evaluation results for several major test tool suites (albeit not security-specific test tools). Not all
of the criteria listed below may be relevant to all test organizations or all test projects. In addition to the
criteria listed here, organizations may also want to consider support for the specific black box security testing
technologies described previously in this document.

1. Ease of Use

1. Intuitive and easy to use for users new to automated testing tools

2. Easy to install; tool may not be used if difficult to install

3. Tasks can be accomplished quickly, assuming basic user proficiency

4. Easy to maintain automated tests, with a central repository that enables users to separate GUI
object definitions from the script

5. Can vary how designs and documents are viewed (zooming, multipage diagrams easily supported,
multiple concurrent views); basic windowing

2. Tool Customization

129. http://www.uml.org.cn/Test/12/Automated%20Testing%20Tool%20Evaluation%20Matrix.pdf

http://www.uml.org.cn/Test/12/Automated%20Testing%20Tool%20Evaluation%20Matrix.pdf

Black Box Security Testing Tools 13
ID: 261-BSI | Version: 16 | Date: 9/9/09 10:41:13 AM

1. Fully customizable toolbars to reflect any commonly used tool capabilities

2. Tool customizable: fields added, deleted

3. Fully customized editor with formats and colors for better readability

4. Tool support for required test procedure naming convention

3. Breadth of Testing

1. Can be used with non-Microsoft platforms (UNIX, Linux, FreeBSD, Mac)

2. Tests for common website vulnerabilities

3. Evaluates the test environment as well as the software

4. Supports standard web protocols for fuzzing and domain testing.

4. Test Coverage and Completeness

1. Coverage refers to the ability of the tools to test for all (known) categories of vulnerabilities
relevant to the product that has been developed. It is important to obtain a sense of the percentage
and nature of potential vulnerabilities the tools tests for. For example, if evaluating a web-based
system, the organization will want to determine whether the test tool identifies issues that may
result from improper input validation, SQL insertion attacks, cross-site scripting attacks, or
improper session management.

5. Accuracy/False-Positive Rate

1. Is there a large number of false positives? False positives will result in more analysis work for the
tester, who will be required to manually evaluate the results of the test tool.

2. Is there a large number of unidentified vulnerabilities?

6. Test Language Features

1. Allows add-ins and extensions compatible with third-party controls

2. Does not involve additional cost for add-ins and extensions

3. Has a test editor/debugger feature

4. Test scripting language flexible yet robust; allows for modular script development

5. Scripting language not too complex

6. Scripting language allows for variable declaration and use and for parameter to be passed between
functions

7. A test script compiler or an interpreter used?

8. Allows for interfacing and testing of external .dll and .exe files

9. Published APIs: Language Interface Capabilities

10. Tool is not intrusive: source code of application does not need to be expanded by inserting
additional statements or dlls for the application to be compatible with the tool

11. Allows for data-driven testing

12. Allows for automatic data generation

13. Allows for adding timers for timing transaction start and end

14. Allows for adding comments during recording

15. Allows for automatic or specified synchronization between client and server

16. Allows for object data extraction and verification

17. Allows for database verification

18. Allows for text (alphanumeric) verification

19. Allows for wrappers (shells) whereby multiple procedures can be linked and called from one
procedure

20. Allows for automatic data retrieval from any data source—RDBMS, legacy system, spreadsheet—
for data-driven testing

21. Allows for use of common spreadsheet for data-driven testing

Black Box Security Testing Tools 14
ID: 261-BSI | Version: 16 | Date: 9/9/09 10:41:13 AM

22. Ease of maintaining scripts when application changes

7. Test Management

1. Supports test execution management

2. Support for industry standards in testing processes (e.g., SEI/CMM, ATLM, ISO)

3. Interoperability with tools being used to automate traditional testing

4. Application requirements management support integrated with the test management tool

5. Requirements management capability supports the trace of requirements to test plans to provide
requirement coverage metrics

6. Test plans can be imported automatically into test management repository from standard text files

7. Can be customized to organization’s test process

8. Supports planning, managing, and analyzing testing efforts; can reference test plans, matrices,
product specifications, in order to create traceability

9. Supports manual testing

10. Supports the migration from manual to automated scripts

11. Can track the traceability of tests to test requirements

12. Has built-in test requirements modules

13. Can check for duplicate defects before logging newly found defects

14. Allows for measuring test progress

15. Allows for various reporting activities

16. Allows for tracking of manual and automated test cases

17. Has interface to software architecture/modeling tool

18. Is integrated with unit testing tools

19. Has interface to test management tool

20. Has interface to requirements management tool

21. Has interface to defect tracking tool

22. Has interface to configuration management tool

23. Provides summary-level reporting

24. Includes error filtering and review features

25. Enables metric collection and metric analysis visualization

8. Interoperability

1. Major test automation suites provide functionality that is useful in any large-scale testing process.
For smaller, more specialized tools, interoperability with other test tool suites may be considered
as an evaluation criterion.

9. Load and Stress Test Features

1. All users can be queued to execute a specified action at the same time

2. Automatic generation of summary load testing analysis reports

3. Ability to change recording of different protocols in the middle of load-recording session

4. Actions in a script can be iterated any specified number of times without programming or
rerecording of the script

5. Different modem connection speeds and browser types can be applied to a script without any
rerecording

6. Load runs and groups of users within load runs can be scheduled to execute at different times

7. Automatic load scenario generation based on load testing goals: hits/second, number of concurrent
users before specified performance degradation, and so on

8. Cookies and session IDs automatically correlated during recording and playback for dynamically
changing web environments

Black Box Security Testing Tools 15
ID: 261-BSI | Version: 16 | Date: 9/9/09 10:41:13 AM

9. Allows for variable access methods and ability to mix access methods in a single scenario: modem
simulation or various line speed simulation

10. Ability to have data-driven scripts that can use a stored pool of data

11. Allows for throttle control for dynamic load generation

12. Allows for automatic service-level violation (boundary value) checks

13. Allows for variable recording levels (network, web, API, and so on)

14. Allows for transaction breakdown/drill-down capabilities for integrity verification at the per client,
per session, and per instance level for virtual users

15. Allows for web application server integration

16. Supports workload, resource, and/or performance modeling

17. Can run tests on various hardware and software configurations

18. Support headless virtual user testing feature

19. Requires low overhead for virtual user feature (web, database, other?)

20. Scales to how many virtual users?

21. Simulated IP addresses for virtual users

22. Thread-based virtual user simulation

23. Process-based virtual user simulation

24. Centralized load test controller

25. Allows for reusing scripts from functional test suite

26. Support for WAP protocol testing against WAP Gateway or web server

27. Compatible with SSL recording

28. Compatible with which network interaction technologies? (e.g., streaming media, COM, EJB,
RMI, CORBA, Siebel, Oracle, SAP)

29. Compatible with which platforms? (e.g., Linux, UNIX, NT, XWindows, Windows CE, Win3.1,
Win95, Win98, Win2000, WinME)

10. Monitor Test Features

1. Monitors various tiers: web server, database server, and app server separately

2. Supports monitoring for which server frameworks? (e.g., ColdFusion, Broadvision, BEA
WebLogic, Silverstream, ATG Dynamo, Apache, IBM Websphere, Oracle RDBMS, MS SQL
Server, Real Media Server, IIS, Netscape Web Server

3. Supports monitoring of which platforms? (e.g., Linux, NT, UNIX, XWindows, Windows CE,
Win3.1, Win95/98, Win2000)

4. Monitors network segments

5. Supports resource monitoring

6. Synchronization ability in order to determine locking, deadlock conditions, and concurrency
control problems

7. Ability to detect when events have completed in a reliable fashion

8. Ability to provide client-to-server response times

9. Ability to provide graphical results and export them to common formats

11. Consulting Requirements

1. Maturity of vendor

2. Market share of vendor

12. Vendor Qualifications

1. Financial stability of vendor

2. Length of time in business

3. Technological maturity

Black Box Security Testing Tools 16
ID: 261-BSI | Version: 16 | Date: 9/9/09 10:41:13 AM

13. Vendor Support

1. Software patches provided, if deemed necessary

2. Upgrades provided on a regular basis

3. Upgrades backward compatible: scripts from previous version can be reused with later version

4. Training available

5. Help feature available; tool well documented

6. Tech support reputation throughout industry

7. No consulting needed?

8. Availability of and access to tool user groups

14. Product Pricing

1. Price consistent within estimated price range

2. Price consistent with comparable vendor products

3. ROI compared to current in-house technology

4. ROI compared to in-house development of needed technology

Use Throughout the Software Development Life Cycle
Security testing (and security analysis per se) is often regarded as something that takes place at the end of
the software development life cycle. However, far greater success can be achieved by integrating security
testing throughout the life cycle. As with any kind of defect, software vulnerabilities are easier and cheaper
to address if they are found earlier.

Figure 1. Black box security testing in the software development life cycle. Note that black box test
planning can often begin in the design phase due to its comparative independence from source code.

Black box Security Testing and the Requirements/Design Stages
At the current time, potential vulnerabilities arising in the requirements and design phases cannot be detected
with automated tools; human expertise is needed here. Nonetheless, some aspects of test automation should
be considered during this phase.

Test planning usually begins in the requirements phase of the SDLC (see the module on risk-based and
functional security testing). The test plan should include a test automation plan as well. This plan describes
which tests will be automated and how. The “how” can be an important issue, because in many cases testing
does not involve a single, specialized tool but rather a set of general-purpose tools originally intended for
other purposes. The functionality that cannot be obtained in this way will have to be obtained from third
parties or built internally, and it is good to know as soon as possible what extra capabilities will be acquired.

Of course, test automation planning also includes the decision of what testing to automate and what to
do manually. Having a clear idea of the test requirements makes it easier to make this decision, since the
necessary technology can be identified and priced (perhaps using some of the evaluation criteria listed in
this document). Note that many automation requirements can be shared by security testing and traditional
testing; indeed many are supplied only by traditional test automation tools, so interoperability needs to be
considered. In the case of security testing, where the testers themselves often have quite a bit of wide-ranging

Black Box Security Testing Tools 17
ID: 261-BSI | Version: 16 | Date: 9/9/09 10:41:13 AM

expertise, it may be advisable to consult the testers when determining which test activities can be automated
in-house (and at what cost), and to determine whether interoperability can be achieved (possibly without the
use of explicit APIs).

When estimating the utility of building or acquiring test automation tools, it should of course be kept in mind
that some tools might be able to be reused in the future. This is especially true for black box security testing:
the fact that it is black box testing makes it less project-dependent because it does not refer to specific code
artifacts, while the fact that it is security testing leads to a plethora of test conditions that will have to be
recreated in future test projects as testers try to anticipate what an attacker would typically try out.

In many development projects, testing proceeds as a series of test stages, where one module is in the process
of being tested while others are still being developed. In such cases, the test environment cannot wait until
development is finished, but has to be available when the first module is ready for testing. This is another
reason to begin collecting the necessary tools as soon as possible (e.g., to know during the design stage what
the necessary tools will be).

The requirements phase is also the time when abuse cases are collected. Together with attack patterns, these
can be used to start designing black box tests.

Black box Security Testing in the Test/Coding Phase
Typically, the coding and testing phase for a software product consists of a series of test stages. Distinct test
stages arise because different modules are ready for testing at different times during the life cycle, and also
because software modules may be repaired or otherwise modified after testing, so that retesting is needed.

Unit testing refers to the process of testing individual segments of code that are too small to execute
independently. The exact definition of unit testing is somewhat variable, but usually it refers to testing
individual functions, methods, or classes. Since unit testing generally involves software artifacts that cannot
be executed by themselves, it usually requires test drivers. The responsibility for unit testing often falls on
the shoulders of those who are most capable of writing the test drivers, namely the developers themselves.
Unit testing is not black box testing, but certain black box tools may be useful to help with monitoring
software behavior and creating error conditions. If the developers are charged with setting up this support
software on their own, the process may be chaotic and may not get done, with the result that unit testing
neglects security issues. It is preferable for the testing organization to perform this aspect of setting up
the test environment, since it was also the testing organization that outlined the security requirements and
decided what test tools should be acquired.

QA acceptance testing, also known by a number of other names such as smoke testing, is the process of
ensuring that the software is ready to enter the quality assurance process. For example, a module is not
actually ready for testing if it fails to compile for the test environment or immediately exhausts memory and
crashes.

From the security standpoint, a software module might fail QA acceptance testing for a number of obvious
reasons, such as the failure to implement a security requirement that is supposed to be tested. But this
test phase is also a good time to test for stupid implementation mistakes. First and foremost, a naïve
implementation of some security requirement might be blatantly ineffective and not even attempt to deal
with some of the issues that are supposed to be tested. Secondly, QA acceptance testing generally contains
an element of ad hoc testing, which also makes it a good time to test for dumb mistakes that might not have
been foreseen in the test plan. Finally, problems that are easy to test for should be tested early on (e.g., in the
QA acceptance test phase), since it is better to find problems sooner.

For these reasons, black box security testing may play an important role of QA acceptance testing. Fully
automated attack simulations and highly automated fuzzing tests are appropriate here, and testers might also
use domain testing to pursue intuitions. Like other test phases, QA acceptance testing is likely to require
secondary test support tools.

System-level and integration testing are meant to evaluate how the components of the application work
together and how the application works in conjunction with other applications. Many types of vulnerabilities

Black Box Security Testing Tools 18
ID: 261-BSI | Version: 16 | Date: 9/9/09 10:41:13 AM

may not be apparent until the system under test reaches this stage. For example, suppose the system under
test is a web application that creates SQL queries based on user data. For such systems there is a risk of
SQL injection vulnerabilities, but it may be that the SQL interface was stubbed out when the user interface
was tested, while the SQL interface was tested using a test driver. In principle, one could test for SQL
injection vulnerabilities by comparing the input to the user interface with the data that it sends to the SQL
stub, but prepackaged, black box test tools might not be able to understand this data or even be able to see
it. Furthermore, there is a host of other potential security issues that might not become apparent before the
system test or integration test stage even with customized test automation.

At the same time, thorough white box testing [White Box Testing152] becomes quite difficult at this stage,
to say nothing of static analysis, because the complete system may contain many third-party components,
interacting layers implemented in different languages, and communication between different subsystems
running on heterogeneous hardware. Thus, black box testing becomes an increasingly important part of the
overall test process.

Regression testing is meant to test for recurrences of old bugs. It is common to use regression testing to
ensure that bugs have been fixed and that they do not resurface in later versions. By definition, regression
testing involves re-executing old tests, so its success depends primarily on how well those tests have
been recorded and/or automated. This applies whether it is traditional tests or security tests that are
being automated, but if a separate security-testing tool is in use, that tool might have to supply its own
infrastructure for recording and automation of past tests. One caveat is that when developers do not
fully understand what they are implementing (this seems to happen more often than usual with security,
cryptography, and random-number technology), they may write kludges that treat the previous test inputs
as special cases. If such a situation is suspected, it may not be appropriate to use fully automated capture-
replay-style tests during the regression test phase.

Security as a Cross-Cutting Concern
The above discussion attempted to map out various correlations between security testing and the overall
software development cycle. However, this does not mean that security testing should be forced into the
same framework used for traditional testing. Instead, security testing should be treated as a cross-cutting
concern, even though the entry criteria for certain security test activities might be the same as the entry
criteria for traditional test activities.

Case Study
Although it is strongly recommended that an organization does not rely exclusively on black box testing
to build security into a system, black box testing, when coupled with other security activities performed
throughout the SDLC, can be very effective in validating design assumptions, discovering vulnerabilities
associated with the application environment, and identifying implementation issues that may lead to security
vulnerabilities.

For example, an organization had assembled a large software development team to build a high-profile
Internet-based gaming system. The gaming system was planned to augment an existing, government-
sponsored, paper-based gaming system. Understanding the broad and potentially significant security
implications relating to the system, the development organization made every effort to design security
into the product. A security architect was involved with the development effort from initial requirement
generation through system delivery. Security activities were conducted throughout the SDLC to ensure that
security was built into the system. These included the following:

• Security-based requirements were developed.

• Security-based risk assessments to identify areas of greatest risk to the business and the technology
platform were completed.

• Findings from the risk assessments were addressed in the security architecture and implementation.

152. http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/white-box.html (White Box Testing)

http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/white-box.html

Black Box Security Testing Tools 19
ID: 261-BSI | Version: 16 | Date: 9/9/09 10:41:13 AM

• Security-based design and architecture reviews were conducted.

• Security training was provided to developers.

• Code reviews were conducted on security-critical components.

Despite these efforts, an issue associated with the input validation component was identified during
system-level security testing. Although input validation was engineered into the overall design and the
component had been previously approved in both design and code reviews, there was an issue. The source
of the problem was later identified to be associated with the build process. An incorrectly functioning and
previously rejected input validation component had made its way into the final build. Had it not been for the
final system-level security test activity, the system would have been deployed with the faulty input validation
mechanism.

Glossary

acceptance testing Formal testing conducted to enable a user, customer,
or other authorized entity to determine whether to
accept a system or component. [IEEE 90]

ad hoc testing Testing carried out using no recognized test case
design technique. [BS-7925]

authentication The process of confirming the correctness of the
claimed identity. [SANS 09]

black box testing Testing that is based on an analysis of the
specification of the component without reference to
its internal workings. [BS-7925]

buffer overflow A buffer overflow occurs when a program or process
tries to store more data in a data storage area than
it was intended to hold. Since buffers are created to
contain a finite amount of data, the extra information
—which has to go somewhere—can overflow
into the runtime stack, which contains control
information such as function return addresses and
error handlers.

buffer overflow attack See stack smashing.

bug See fault.

capture/replay tool A test tool that records test input as it is sent to
the software under test. The input cases stored can
then be used to reproduce the test at a later time.
[BS-7925]

compatibility testing Testing whether the system is compatible with
other systems with which it should communicate.
[BS-7925]

component A minimal software item for which a separate
specification is available. [BS-7925]

conformance testing The process of testing that an implementation
conforms to the specification on which it is based.
[BS-7925]

cookie Data exchanged between an HTTP server and
a browser (a client of the server) to store state
information on the client side and retrieve it later for

Black Box Security Testing Tools 20
ID: 261-BSI | Version: 16 | Date: 9/9/09 10:41:13 AM

server use. An HTTP server, when sending data to
a client, may send along a cookie, which the client
retains after the HTTP connection closes. A server
can use this mechanism to maintain persistent client-
side state information for HTTP-based applications,
retrieving the state information in later connections.
[SANS 09]

correctness The degree to which software conforms to its
specification. [BS-7925]

cryptographic attack A technique for successfully undermining an
encryption scheme.

cryptography Cryptography garbles a message in such a way
that anyone who intercepts the message cannot
understand it. [SANS 09]

domain The set from which values are selected. [BS-7925]

domain testing Testing with test cases based on the specification
of input values accepted by a software component.
[Beizer 90]

dynamic analysis The process of evaluating a system or component
based on its behavior during execution. [IEEE 90]

encryption Cryptographic transformation of data (called
“plaintext”) into a form (called “cipher text”) that
conceals the data’s original meaning to prevent it
from being known or used. [SANS 09]

failure The inability of a system or component to perform
its required functions within specified performance
requirements. [IEEE 90]

fault A manifestation of an error in software. A fault, if
encountered, may cause a failure. [RTCA 92]

Hypertext Transfer Protocol (HTTP) The protocol in the Internet Protocol (IP) family used
to transport hypertext documents across an internet.
[SANS 09]

integration testing Testing performed to expose faults in the
interfaces and in the interaction between integrated
components. [BS-7925]

interface testing Integration testing in which the interfaces between
system components are tested. [BS-7925]

isolation testing Component testing of individual components in
isolation from surrounding components, with
surrounding components being simulated by stubs.
[BS-7925]

National Institute of Standards and Technology
(NIST)

A unit of the U.S. Commerce Department. Formerly
known as the National Bureau of Standards, NIST
promotes and maintains measurement standards.
It also has active programs for encouraging and
helping industry and science to develop and use
these standards. [SANS 09]

Black Box Security Testing Tools 21
ID: 261-BSI | Version: 16 | Date: 9/9/09 10:41:13 AM

negative requirements Requirements that state what software should not do.

operational testing Testing conducted to evaluate a system or
component in its operational environment. [IEEE 90]

port A port is nothing more than an integer that uniquely
identifies an endpoint of a communication stream.
Only one process per machine can listen on the same
port number. [SANS 09]

precondition Environmental and state conditions that must be
fulfilled before the component can be executed with
a particular input value.

protocol A formal specification for communicating;
the special set of rules that end points in a
telecommunication connection use when they
communicate. Protocols exist at several levels in a
telecommunication connection. [SANS 09]

pseudorandom Appearing to be random, when actually generated
according to a predictable algorithm or drawn from a
prearranged sequence.

race condition A race condition exploits the small window of time
between a security control being applied and the
service being used. [SANS 09]

regression testing Retesting of a previously tested program following
modification to ensure that faults have not been
introduced or uncovered as a result of the changes
made. [BS-7925]

requirement A capability that must be met or possessed by the
system/software (requirements may be functional or
non-functional). [BS-7925]

requirements-based testing Designing tests based on objectives derived from
requirements for the software component (e.g.,
tests that exercise specific functions or probe the
non-functional constraints such as performance or
security). [BS-7925]

reverse engineering Acquiring sensitive data by disassembling and
analyzing the design of a system component [SANS
09]; acquiring knowledge of a binary program’s
algorithms or data structures.

risk assessment The process by which risks are identified and the
impact of those risks is determined. [SANS 09]

security policy A set of rules and practices that specify or regulate
how a system or organization provides security
services to protect sensitive and critical system
resources. [SANS 09]

server A system entity that provides a service in response
to requests from other system entities called clients.
[SANS 09]

Black Box Security Testing Tools 22
ID: 261-BSI | Version: 16 | Date: 9/9/09 10:41:13 AM

session A virtual connection between two hosts by which
network traffic is passed. [SANS 09]

socket The socket tells a host’s IP stack where to plug
in a data stream so that it connects to the right
application. [SANS 09]

software Computer programs (which are stored in and
executed by computer hardware) and associated data
(which also is stored in the hardware) that may be
dynamically written or modified during execution.
[SANS 09]

specification A description, in any suitable form, of requirements.
[BS-7925]

specification testing An approach to testing wherein the testing is
restricted to verifying that the system/software meets
the specification. [BS-7925]

SQL Injection SQL injection is a type of input validation attack
specific to database-driven applications where
SQL code is inserted into application queries to
manipulate the database. [SANS 09]

stack smashing The technique of using a buffer overflow to trick a
computer into executing arbitrary code. [SANS 09]

state transition A transition between two allowable states of a
system or component. [BS-7925]

state transition testing A test case design technique in which test cases are
designed to execute state transitions. [BS-7925]

static analysis Analysis of a program carried out without executing
the program. [BS-7925]

static analyzer A tool that carries out static analysis. [BS-7925]

stress testing Testing conducted to evaluate a system or
component at or beyond the limits of its specified
requirements. [IEEE 90]

stub A skeletal or special-purpose implementation of a
software module used to develop or test a component
that calls or is otherwise dependent on it. [IEEE 90].

syntax testing A test case design technique for a component or
system in which test case design is based on the
syntax of the input. [BS-7925]

system testing The process of testing an integrated system to verify
that it meets specified requirements. [Hetzel 88]

test automation The use of software to control the execution of tests,
the comparison of actual outcomes to predicted
outcomes, the setting up of test preconditions, and
other test control and test reporting functions.

test case A set of inputs, execution preconditions, and
expected outcomes developed for a particular
objective, such as to exercise a particular program

Black Box Security Testing Tools 23
ID: 261-BSI | Version: 16 | Date: 9/9/09 10:41:13 AM

path or to verify compliance with a specific
requirement. [IEEE 90]

test suite A collection of one or more test cases for the
software under test. [BS-7925]

test driver A program or test tool used to execute software
against a test suite. [BS-7925]

test environment A description of the hardware and software
environment in which tests will be run and any other
software with which the software under test interacts
when under test, including stubs and test drivers.
[BS-7925]

test plan A record of the test planning process detailing the
degree of tester independence, the test environment,
the test case design techniques and test measurement
techniques to be used, and the rationale for their
choice. [BS-7925]

vulnerability A defect or weakness in a system’s design,
implementation, or operation and management that
could be exploited to violate the system’s security
policy. [SANS 09]

web server A software process that runs on a host computer
connected to the Internet to respond to HTTP
requests for documents from client web browsers.

References

[Beizer 90] Beizer, Boris. Software Testing Techniques, Chapter
10. New York, NY: van Nostrand Reinhold, 1990
(ISBN 0-442-20672-0).

[Beizer 95] Beizer, Boris. Black-Box Testing: Techniques for
Functional Testing of Software and Systems. New
York, NY: John Wiley & Sons, 1995.

[Binder 99] Binder, R. V. Testing Object-Oriented Systems:
Models, Patterns, and Tools (Addison-Wesley
Object Technology Series). Boston, MA: Addison-
Wesley Professional, 1999.

[Black 02] Black, Rex. Managing the Testing Process:
Practical Tools and Techniques for Managing
Hardware and Software Testing, 2nd ed. New York,
NY: John Wiley & Sons, 2002.

[BS 7925] British Computer Society. Glossary of terms used in
software testing (BS 7925-1).

[Capers 94] Jones, Capers. Assessment and Control of Software
Risks. Englewood Cliffs, NJ: Yourdon Press, 1994.

[CERT 06] CERT Coordination Center. CERT/CC Statistics

1988-2006168. 2006.

http://www.cert.org/stats/cert_stats.html
http://www.cert.org/stats/cert_stats.html

Black Box Security Testing Tools 24
ID: 261-BSI | Version: 16 | Date: 9/9/09 10:41:13 AM

[DeVale 99] DeVale, J.; Koopman, P.; & Guttendorf, D. “The

Ballista Software Robustness Testing Service169,”

33-42. 16th International Conference on Testing
Computer Software. Washington, D.C., June 14-18,
1999.

[Du 98] Du, W. & Mathur, A. P. Vulnerability Testing of
Software System Using Fault Injection (COAST
technical report). West Lafayette, IN: Purdue
University, 1998.

[Du 00] Du, W. & Mathur, A. P. “Testing for Software
Vulnerability Using Environment Perturbation,”
603-612. Proceedings of the International
Conference on Dependable Systems and Networks
(DSN 2000), Workshop On Dependability Versus
Malicious Faults. New York, NY, June 25-28, 2000.
Los Alamitos, CA: IEEE Computer Society Press,
2000.

[Dustin 99] Dustin, E.; Rashka, J.; & Paul, J. Automated
Software Testing. Boston, MA: Addison Wesley
Professional, 1999.

[Dustin 01] Dustin, Elfriede; Rashka; Jeff; McDiarmid,
Douglas; & Nielson, Jakob. Quality Web Systems:
Performance, Security, and Usability. Boston, MA:
Addison Wesley Professional, 2001.

[Faust 04] Faust, S. “Web Application Testing with SPI
Fuzzer.” SPI Dynamics Whitepaper, 2004.

[Fewster 99] Fewster, Mark & Graham, Doroty. Software
Test Automation. Boston, MA: Addison-Wesley
Professional, 1999.

[Fink 97] Fink, G. & Bishop, M. “Property-Based Testing:
A New Approach to Testing for Assurance.” ACM
SIGSOFT Software Engineering Notes 22, 4 (July
1997): 74-80.

[Friedman 95] Friedman, Michael A. & Voas, Jeffrey M. Software
Assessment: Reliability, Safety, Testability. Wiley
InterScience, 1995.

[Ghosh 98] Ghosh, Anup K.; O’Connor, Tom; & McGraw, Gary.
“An Automated Approach for Identifying Potential
Vulnerabilities in Software,” 104-114. Proceedings
of the 1998 IEEE Symposium on Security and
Privacy. Oakland, California, May 3-6, 1998. Los
Alamitos, CA: IEEE Computer Society Press, 1998.

[Graff 03] Graff, Mark G. & Van Wyk, Kenneth R. Secure
Coding: Principles and Practices. Sebastopol, CA:
O’Reilly, 2003 (ISBN: 0596002424).

[Grance 02] Grance, T.; Myers, M.; & Stevens, M. Guide
to Selecting Information Technology Security

http://www.ece.cmu.edu/~koopman/ballista/tcs99/index.html
http://www.ece.cmu.edu/~koopman/ballista/tcs99/index.html
http://www.hipaassoc.com/Anonymous/sp800-36%20Guide%20to%20Selecting%20Information%20Technology%20Security%20Products.pdf
http://www.hipaassoc.com/Anonymous/sp800-36%20Guide%20to%20Selecting%20Information%20Technology%20Security%20Products.pdf

Black Box Security Testing Tools 25
ID: 261-BSI | Version: 16 | Date: 9/9/09 10:41:13 AM

Products170 (NIST Special Publication 800-36),
2002.

[Grance 04] Grance, T.; Myers, M.; & Stevens, M. Security
Considerations in the Information System

Development Life Cycle171 (NIST Special Publication
800-64), 2004.

[Guttman 95] Guttman, Barbara; Roback, Edward. An Introduction

to Computer Security172. Gaithersburg, MD:
U.S. Department of Commerce, Technology
Administration, National Institute of Standards and
Technology, 1995.

[Hetzel 88] Hetzel, William C. The Complete Guide to Software
Testing, 2nd ed. Wellesley, MA: QED Information
Sciences, 1988.

[Hoglund 04] Hoglund, Greg & McGraw, Gary. Exploiting
Software: How to Break Code. Boston, MA:
Addison-Wesley Professional, 2004.

[Howard 06] Howard, Michael & Lipner, Steve. The Security
Development Lifecycle. Redmond, WA: Microsoft
Press, 2006, ISBN 0735622142.

[Hsueh 97] Hsueh, Mei-Chen; Tsai, Timothy K.; & Lyer,
Ravishankar K. “Fault Injection Techniques and
Tools.” Computer 30, 4 (April 1997): 75-82.

[Hunt 99] Hunt, G. & Brubacher, D. “Detours: Binary

Interception of Win32 Functions174.” USENIX
Technical Program - Windows NT Symposium 99.
Seattle, Washington, July 12-15, 1999.

[IEEE 90] IEEE. IEEE Standard Glossary of Software
Engineering Terminology (IEEE Std 610.12-1990).
Los Alamitos, CA: IEEE Computer Society Press,
1990.

[Kaksonen 02] Kaksonen, R. “A Functional Method for Assessing

Protocol Implementation Security175.” Technical
Research Centre of Finland, VTT Publications 48.

[Kaner 99] Kaner, Cem; Falk, Jack; & Nguyen, Hung Quoc.
Testing Computer Software, 2nd ed. New York, NY:
John Wiley & Sons, 1999.

[Koziol 04] Koziol, J.; Litchfield, David; Aitel, Dave; Anley,
Chris; Eren, Sinan "noir"; Mehta, Neel; & Hassell,
Riley. The Shellcoder’s Handbook: Discovering and
Exploiting Security Holes. New York, NY: John
Wiley & Sons, 2004.

[Marick 94] Marick, Brian. The Craft of Software Testing:
Subsystems Testing Including Object-Based and
Object-Oriented Testing. Upper Saddle River, NJ:
Prentice Hall PTR, 1994.

http://www.hipaassoc.com/Anonymous/sp800-36%20Guide%20to%20Selecting%20Information%20Technology%20Security%20Products.pdf
http://csrc.nist.gov/publications/nistpubs/800-64/NIST-SP800-64.pdf
http://csrc.nist.gov/publications/nistpubs/800-64/NIST-SP800-64.pdf
http://csrc.nist.gov/publications/nistpubs/800-64/NIST-SP800-64.pdf
http://csrc.nist.gov/publications/nistpubs/800-12/handbook.pdf
http://csrc.nist.gov/publications/nistpubs/800-12/handbook.pdf
http://www.usenix.org/publications/library/proceedings/usenix-nt99/hunt.html
http://www.usenix.org/publications/library/proceedings/usenix-nt99/hunt.html
http://www.inf.vtt.fi/pdf/publications/2001/P448.pdf
http://www.inf.vtt.fi/pdf/publications/2001/P448.pdf

Black Box Security Testing Tools 26
ID: 261-BSI | Version: 16 | Date: 9/9/09 10:41:13 AM

[McGraw 04a] McGraw, Gary & Potter, Bruce. “Software Security
Testing.” IEEE Security and Privacy 2, 5 (Sept.-Oct.
2004): 81-85.

[McGraw 04b] McGraw, Gary. “Application Security Testing

Tools: Worth the Money?176” Network Magazine,
November 1, 2004.

[Miller 90] Miller, Barton P.; Fredriksen, Lars; & So, Bryan.
“An empirical study of the reliability of UNIX
utilities.” Communications of the ACM 33, 12
(December 1990): 32-44.

[Miller 95] Miller, B.; Koski, D.; Lee, C.; Maganty, V.; Murthy,
R.; Natarajan, A.; & Steidl, J. Fuzz Revisited: A
Re-Examination of the Reliability of Unix Utilities
and Services. Technical report, Computer Sciences
Department, University of Wisconsin, 1995.

[NIST 02] National Institute of Standards and Technology.
The Economic Impacts of Inadequate Infrastructure

for Software Testing177 (Planning Report 02-3).
Gaithersburg, MD: National Institute of Standards
and Technology, 2002.

[NIST 09] National Institute of Standards and Technology.

National Vulnerability Database178. 2009.

[Ricca 01] Ricca, F. & Tonella, P. “Analysis and Testing of
Web Applications,” 25–34. Proceedings of the
23rd IEEE International Conference on Software
Engineering. Toronto, Ontario, Canada, May 2001.
Los Alamitos, CA: IEEE Computer Society Press,
2001.

[Richardson 08] Richardson, Robert. 2008 CSI/FBI Computer

Crime and Security Survey179. San Francisco, CA:
Computer Security Institute, 2008.

[RTCA 92] RTCA, Inc. DO-178B, Software Considerations
in Airborne Systems and Equipment Certification.
Issued in the U.S. by RTCA, Inc. (document
RTCA SC167/DO-178B) and in Europe by
the European Organization for Civil Aviation
Electronics (EUROCAE document ED-12B),
December 1992.

[Rukhin 01] Rukhin, Andrew; Soto, Juan; Nechvatal, James;
Smid, Miles; Barker, Elaine; Leigh, Stefan;
Levenson, Mark; Vangel, Mark; Banks, David;
Heckert, Alan; Dray, James; & Vo, San. A Statistical
Test Suite for Random and Pseudorandom Number

Generators for Cryptographic Applications180. NIST
Special Publication 800-22, 2001.

[SANS 09] The SANS Institute. SANS Glossary of Terms Used

in Security and Intrusion Detection181, 2009.

http://www.networkmagazine.com/showArticle.jhtml?articleID=49901410
http://www.networkmagazine.com/showArticle.jhtml?articleID=49901410
http://www.nist.gov/director/prog-ofc/report02-3.pdf
http://www.nist.gov/director/prog-ofc/report02-3.pdf
http://nvd.nist.gov/
http://gocsi.com/forms/fbi/csi_fbi_survey.jhtml
http://gocsi.com/forms/fbi/csi_fbi_survey.jhtml
http://csrc.nist.gov/publications/nistpubs/800-22/sp-800-22-051501.pdf
http://csrc.nist.gov/publications/nistpubs/800-22/sp-800-22-051501.pdf
http://csrc.nist.gov/publications/nistpubs/800-22/sp-800-22-051501.pdf
http://www.sans.org/resources/glossary.php
http://www.sans.org/resources/glossary.php

Black Box Security Testing Tools 27
ID: 261-BSI | Version: 16 | Date: 9/9/09 10:41:13 AM

[SPI 02] SPI Dynamics. “SQL Injection: Are Your Web
Applications Vulnerable?” (white paper). Atlanta,
GA: SPI Dynamics, 2002.

[SPI 03] SPI Dynamics. “Web Application Security
Assessment” (white paper). Atlanta, GA: SPI
Dynamics, 2003.

[Viega 01] Viega, John & McGraw, Gary. Building Secure
Software: How to Avoid Security Problems the Right
Way. Boston, MA: Addison-Wesley Professional,
2001 (ISBN 020172152X).

[Viega 03] Viega, John & Messier, Matt. Secure Programming
Cookbook for C and C++. Sebastopol, CA:
O’Reilly, 2003 (ISBN: 0596003943).

[Voas 95] Voas, Jeffrey M. & Miller, Keith W. “Examining
Fault-Tolerance Using Unlikely Inputs: Turning the
Test Distribution Up-Side Down,” 3-11. Proceedings
of the Tenth Annual Conference on Computer
Assurance. Gaithersburg, Maryland, June 25-29,
1995. Los Alamitos, CA: IEEE Computer Society
Press, 1995.

[Voas 98] Voas, Jeffrey M. & McGraw, Gary. Software Fault
Injection: Inoculating Programs Against Errors,
47-48. New York, NY: John Wiley & Sons, 1998.

[Wack 03] Wack, J.; Tracey, M.; & Souppaya, M. Guideline

on Network Security Testing182. NIST Special
Publication 800-42, 2003.

[Whalen] Whalen, Sean; Bishop, Matt; & Engle, Sophie.

“Protocol Vulnerability Analysis183 (draft).”

[Whittaker 02] Whittaker, J. A. How to Break Software. Reading
MA: Addison Wesley, 2002.

[Whittaker 03] Whittaker, J. A. & Thompson, H. H. How to Break
Software Security. Reading MA: Addison Wesley,
2003.

[Wysopal 03] Wysopal, Chris; Nelson, Lucas; Zovi, Dino Dai;
& Dustin, Elfriede. The Art of Software Security
Testing. Upper Saddle River, NJ: Pearson Education,
Inc.

Cigital, Inc. Copyright
Copyright © Cigital, Inc. 2005-2007. Cigital retains copyrights to this material.

Permission to reproduce this document and to prepare derivative works from this document for internal use
is granted, provided the copyright and “No Warranty” statements are included with all reproductions and
derivative works.

http://csrc.nist.gov/publications/nistpubs/800-42/NIST-SP800-42.pdf
http://csrc.nist.gov/publications/nistpubs/800-42/NIST-SP800-42.pdf
http://www.node99.org/projects/vuln/vuln.pdf

Black Box Security Testing Tools 28
ID: 261-BSI | Version: 16 | Date: 9/9/09 10:41:13 AM

For information regarding external or commercial use of copyrighted materials owned by Cigital, including

information about “Fair Use,” contact Cigital at copyright@cigital.com1.

The Build Security In (BSI) portal is sponsored by the U.S. Department of Homeland Security (DHS),
National Cyber Security Division. The Software Engineering Institute (SEI) develops and operates BSI. DHS
funding supports the publishing of all site content.

1. mailto:copyright@cigital.com

mailto:copyright@cigital.com

